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I. INTRODUCTION

~~~~~Thi s paper i s concerne d w ith the accurac y of numer ical solu tions w ith coarse
meshes of nonlinear partial differential equations , such as the Navier-Stokes. By
presuming smooth, conver gent di fference approx imations , 4he-author- earr ied-ou4~some

>.. first differential analyses1 of the cotilputational errors and r.coniiiende~ an upper
5 ~~~~~~~~~~~~~~~~~error boun d of 0.03 Re~ 3jor second orde~r accurate conservative difference schemes,

C-) compi~ted at ~~~~~~~~~~~~~~~~~~~~~~~~ solu tions of com p lex pro blems , the Re~x
lii is a~preciably larger and t

C
he solu tions are oscillatory . Neither the local~ trunca-

tion error nor the suggested upper bound provide any meaningful measure of the errors
of the computed solution . Indeed , the computed solutions at successive mesh refine-
men ts often become “worse ” and su ggest possible nonun iform conver gence of the

e”~~~ sequence as ~x -
~~ 0. There fore we solve anal yticall y the dif ference formula tions of

some model problems to learn about the roles of various physical and computational
parame ters , including the mesh Reynolds number Ret~x. The analytic results are
verified by computational solutions of the model equations wi th various time depen-
dent algorithms .

II. MODEL ANALYSIS

The following model problems wi th known exact steady state differential solu-
tions are chosen for study.

1. Model 1: The Burgers ’ equa tion

u~~+uu ~~=~~~u,~ ( 1)

with specified boundary values
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u(x 0) = 0, u(x l ) —l (2)

2. Model 2: The same Burgers ’ equation wi th upstream boundary value and down-
stream extrapolation

u(x=—l) = 1 .
~~- (x=l ) = 0 (3)

3. Model 3: The one-dimensional gas dynamic equations

Pt 
+ (PU) x 

= 0

(Pu)t + (pu2) + =

P = A P r (4)

with upstream boundary va l ues and downstream extrapola tion condi tions

u(x -l ) = 1 , p(x=—l ) = 1

.
~~~
. (x l) = 0, and ~~- (x=l) = 0 . (5)

The steady state solution of (4) and (5) represents a jump from an upstream uni-
form flow to a downstram uniform flow wi th velocity / , which is the real solution
of u from the Hugoniot relation

U + A,Ur = l  + p
~ (6)

r is the polytropic i ndex defining the thermodynamic process of transition and A is
the initial data upstream.

Equations (1) and (4) are discretized according to the algorithm :

Uxx ~ (u~+1 — 2U~ + U~_1 )/~.x
2 (7a)

uu~ = (u 2/2)
~ 

‘
~.‘ [~u~(u~+1

_u
~ ~ 

+ (U~~1 - U~~1)]/(2+y)2~x (7b)

which renders the resulting difference formulations strictly “conservati ve” , i.e.,
suninable wi thout residue in the interior of the domain of sunination.2 Thus the
Stokes theorem can be applied to the difference form to relate the boundary condi-
tions explicitly wi th any Interior point values. The difference form of Eq. (1) in
the steady state is

+ U~(U~+1
_U
~_1 ) - u~_ 1 = 

2~~ [u~+1
_2u

~+u~..1] (8)

/

The difference form of Eqs. (4) wI th discretization parameter y1 for the continuity

• and 
~2 

for the momentum equation is

—pm ..__.____ —--- — —~~ — -~ — tss_ --



_____ — 
— - -

~

——
~~

-

• 
• 

2[(PU)~+1 - (~u)~~1] + 1.[~~(u~+1
_u

~_ 1 ) + ~~~~~~~~~~ = 0

2E( PU2)~+l - (pU2)~~ 1] + ‘y2E U~{( Pu)
~+1 - (~U)~~1} +  (Pu )~(u~+1-u~~1)]

+ A E (P~+l )
r 

- (~~~ )r] 
2(2+12) 

~~~~~~~~~~~ (9 )

The downstream extrapolation conditions are expressed as

J~~1 ~~ 
= -l ~ etc. (10)

There are other algorithms that lead to strictly conservative difference formula-
tions for complicate d nonli near terms .

Real solutions of each model system of equations are obtained analytically as
follows :

1 . Obtain exac t solu tion(s) of the system for spec ial va lues
of Re~x (or REi~x) suc h as R~~x , R~L~x, . . .  R~L~x

2. Identify the region of rapid variation (or jump) in the
exact solution in which the fully nonlinear difference
relations must be taken .

3. Obtain lineari zed small perturbation solutions of the
difference equations system about the exact solution in
its region of small variation , generally including the
boundary The linearized solution serves to relate the
boundary values to those func tion values where the linear -

region joins the nonlinear (or jump) region in the interior.’~ 
2~4~i~424p1
~~~~~~~~~~~~~~~~~~~~~~ ~~zz

4. Sum up all the difference relations over the enti re domain ~~
to relate the boundary values. A

5. Ob ta i n all the rea l sets of solu tions of the function values
from as many algebraic equations deduced in 2 through 4.

6. Asymptotic results for finite but large ReL~x are studied
wi th or wi thout explicit solution(s) of the nonl i near
system of algebraic equations.

For practi cal range of ReAx > 10, the one term asymptotic results give simple
functional dependence of the error of the “exact difference solution ” compared with
the “exac t dif ferential solution”. Such an analysis is illustra ted in Ref. 3 for
Model 1 and detailed in Ref. 4 for the other cases. The analytical results have
been verified by digita l computations with the time dependent schemes of
Bra i lovs kaya ,5 of Vlctoria-Widhopf,6 of Peyret-Viviand ,7 and of Cheng-Allen ,1 all
with the same conservative steady state equation (8). All the computed results
under the same steady state criterion agree wi th one another and wi th the analytic
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estimates to three significant figures. As shown in Fig. 1 , the errors of computed
resul ts for negati ve values of y increases to some maximum at ReAx ‘v 3 and then

• reaches some minimum at larger ReAx . The solutions in different ranges of ReAx are
illustrated in Fig. 2. Similar results for Model 2 and Model 3 are given in Figs 3
and 4 and in Figs. 5 to 7, respectively. When the time dependent scheme like
MacCormac k i s used , which does not reduce to (8) in the steady state, the error in-
creases monoton i cally as ~ 0.06 ReAx

2 wi thout plateau or extrema as ReL~x increas es
(Fig. 1). The presence of error minimum at suitable large ReAx values may be a
characteristic of the strictly conservative difference formulation.

III. ANALYTIC INFERENCES

The following qualitative inferences perti nent to practical computations may be
obtained from the results of the above model study:

1. It is generally sufficient to compute wi th 8 - 10 mesh points
wi thin the characteristic length of the problem when ReAx is in the
appropriate range . Many more mesh points do not improve the accuracy
of the computed results at the same ReAx .

2. There ex i st for a cer tain class of di fference formula tion
cr itical mes h Reynolds numbers (ReAx , RA x , etc.) at which computations
will yield smooth but abrupt jump solutions with one or more mesh points
wi thin the jump . They can be excellent approximate solutions at coarse
mesh , although solutions wi th minimal error occur at slightly different
va l ues of ReAx . For suitable choices of the algorithm , the trough of
the error curve aroun d R~Ax can be flat so that computations in a broad
range of va lues of Re~x can yield resu lt s as accura te as what might be
expected from smooth solutions at ReAx “. 1.

3. The magnitudes of these critical ReAx can be determined a priori
for the model problems . They depend on the y ’s representing the higher
order details of the difference algorithms . The value of RA x depends
more importantly on the discretization parameter (y1) for the continuity
equation than on of the momentum equati on (Fig. 6). The thermodynamic
variables in the polytropic relation in (4) appears unimportant.

4. With proper boundary formulation (such as Model 1), computations
at ReAx 1 (or < R~Ax) yield smooth and accurate results wi th an upper
bound of ‘~~ 0.03 ReAx

2 
as is determined from the first differential

ana lysis. 1 The sequence appears to converge to the correc t solution as
ReAx 0. Computationa l results at ReAx > R~Ax are osc i llatory and may
or may not exhibit minimum error at some critical ReAx > R~Ax .
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5. With uncertain boundary formulation (such as downstream extrap-
olation in Models 2 and 3), smooth computed solutions will be obta i ned
a t ReAx < R~Ax but they give wrong Hugoniot or jump magnitudes. The
sequence of solutions can “converge” to the wrong solution as ReAx *0.
The oscillatory computed solutions at Rei•; > R~Ax appears to di verge
as ReAx decreases toward R~Ax . But, at or near the suitabl e critical
ReAx under proper choices of y ’s, they can provide excellent “asumptotic
approximations ” with small maximal errors; quite acceptable in practice .

The above inferences are drawn from the study of only the one-dimensional model
equations , and discretized only in strictly conservative difference formulations.
They are not expected to apply if the difference formulation is non-conservative
since Stokes ’ theorem is crucial to the analysis. They are , however, hoped to hold
wi thout serious modifications for more complex equation systems in multi-space
dimensions. For the latter purpose , we shal l only present some numer ical ev id ences.

IV. TWO DIMENSIONAL COMPUTATIONS WITH NAVIER-STOKES EQUATIONS

The propagation of an oblique , planar shock wave in a unifo rm supersonic stream
at M = 2 and its eventual reflection from an inviscid wall have been computed at
various mesh Reynolds numbers .9 The simplest algorithm with 

~l 
= 

~2 
= 0 (Cheng-Allen)

was adopted for discretiz ing the Navier-Stokes equations wi th downstream extrapola-
tion condi tions. Fig. 8 shows the computed results of a shock with pressure ratio

= 1.910. If the l-D model results should be assumed to apply to the components
normal to the shock , the estimate of the critical Reynolds number (ReAn )crit based

/ U2n \ 1
on the upstream velocity U1 will be 41( 1 - n—), according to the procedure in

uln
Ref. 2, p. 181 . The critical Reynolds number (ReAxl)crit. based on the mesh size Ax
in the x-direction will be 15.2 for the above case. We then observe in Fig. 8 that
smooth solutions are obtai ned wi th (ReAx)/(ReAxl)crit < 1. Transition from smooth
to oscillatory solutions takes place gradually when (ReAxl)/(ReAxl)crit “~ 1. The -

reflection of the above shock from an inviscid w~1l is shown in Fig. 9. The reflect-
ed shock has a pressure ratio p3/p2 

= 1.885 wIth (R~Axl) = 22.1 . The same inference
concerning the transition of the smooth to oscillatory solutions is observed . Fig.
10 shows the computed pressure profiles for a weak shock wi th p2/p 1 

= 1.096 and
(R~Axl) = 122. Fig. 11 gives the variation of the error norms with ReAxi . The
occurrence of an error mi nimum of ~3% appears when (ReAxl)/(ReAxl)crit is between
3.1 and 6.2. This ratio compares wi th 2 as is shown in Fig. 7 for the case

for the one dimensional gas dynamics model . In view of the fact that the case

~1 =~2
=0 departs substantially from the optima l curve shown in Fig. 6 and that the

model Is In one rather than two space dimensions , the agreement Is encouraging. How

wel l the ana lytic inference outl i ned in the previous secti on may hol d and to what

• extent these inferences may have to be modified when more complex probl ems are
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• solved computationally with the Navier-Stokes equations , clearly needs further study .
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CAPTIONS OF FI t ES

Fig. 1. Maximum error E as a function of mest. .ynolds number ReAx = 
AUAx

for Bur gers ’ Model wi th downstream boundary value .

Fig. 2. Type of solutions of Burgers ’ model with downstream boundary value .

Fig. 3. Type of solutions of Burgers ’ model wi th downstream extrapolation.

Fig. 4. E vs ReAx for Burgers ’ model wi th downstream extrapolation.

• Fig. 5. Type of solutions of 1-D gas dynamics model .
(a) jump next to downstream boundary k = J-2.
(b) jump at intermediate point k < J-2.

Fig. 6. Optimal discretization parameters for 1-D gas dynami c model .

Fig. 7. E,,, vs ReAx , for l-D gas dynamics model r = 1.4, k = J-1 .

Fig. 8. Pressure field of an oblique shock wi th p2/p1 = 1.91 0 in Mach 2
su person ic flow .

Fig. 9. Pressure field of shock reflection from inviscid wall p2/p 1 1.910,
= 1.885.

Fig. 10. Pressure field of an oblique weak shock wi th p2/p1 
= 1.096.

Fig. 11 . Error norms as a function of ReAx for shock calculations.
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